

SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOGY::PUTTUR Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: APPLIED PHYICS (19HS0849) Course & Branch: I-B.Tech – II Sem - EEE. Regulation: R19

<u>UNIT – I</u>

Harmonic Oscillators

1.	a) Define simple harmonic motion. Give three examples.	(4M)
	b) Derive the equation of motion of simple harmonic oscillator and find its solution.	(8M)
2.	a) What is a simple harmonic oscillator? Derive the equation of motion of simple	
	harmonic oscillator.	(8M)
	b) A particle executes SHM with a period of 0.002 sec and amplitude of 10 cm.	
	Find its acceleration when it is 4 cm away from its mean position and also obtain	
	its maximum velocity.	(4M)
3.	a) Define simple harmonic motion and simple harmonic oscillator. Give examples.	(4M)
	b) Write the properties of simple harmonic motion.	(4M)
	c) A particle executing S.H.M is represented by $x=10sin(4\pi t + \pi/3)$ m. Find the	
	frequency and the displacement after a time of 1 second.	(4M)
4.	a) Define damped harmonic motion. Give examples.	(4M)
	b) Derive and solve differential equation of damped harmonic oscillator.	(8M)
5.	a) Distinguish between damped and forced oscillations.	(4M)
	b) Solve the differential equation of damped harmonic oscillator.	(8M)
6.	a) Explain logarithmic decrement, relaxation time and quality factor of an oscillator.	(9M)
	b) The amplitude of a second pendulum falls to one half of its initial value in	
	150 seconds. Calculate the Q factor.	(3M)
7.	a) Explain different types of damped oscillations with suitable examples.	(8M)
	b) A point performs damped oscillations according to the law $x=a_oe^{-bt} \sin \omega t$.	
	Find the amplitude of oscillation and velocity of the particle at the moment t=0.	(4M)
6.	a) What are damped oscillations? Solve the differential equation of a damped	
	harmonic oscillator.	(8M)
	b) Discuss the case of under damped motion.	(4M)
9.	a) What are forced oscillations? Give examples.	(4M)
	b) Distinguish between damped and forced oscillations.	(4M)
	c) Explain the phenomenon of resonance with suitable examples.	(4M)
10	a) Distinguish between damped and forced oscillations with suitable examples.	(4M)

b) Explain the phenomenon of resonance and write the applications of resonance		
in various fields.	(4M)	
c) The frequency of a tuning fork is 300Hz. If its quality factor Q is $5x10^4$, find the time		
After which its energy becomes $(1/10)$ of its initial value.	(4M)	

<u>UNIT – II</u>

Principles of Quantum Mechanics

1.	a) What are matter waves? Write their properties.	(4M)
	b) Derive the expression for de Broglie wavelength.	(4M)
	c) Calculate the velocity and kinetic energy of an electron of wavelength 1.66×10^{-10} m.	(4M)
2.	a) Explain de Broglie hypothesis.	(4M)
	b) Calculate the de Broglie wavelength associated with a proton moving with a velocity	
	of 1/10 th of velocity of light.	(4M)
	c) Illustrate Heisenberg uncertainty principle and write its significance.	(4M)
3.	a) Explain the concept of matter waves.	(2M)
	b) Prove that the product of uncertainty of pair of variables describing the motion of	
	particles is always not less than $h/4\pi$.	(4M)
	c) Deduce Schrodinger time independent wave equation.	(6M)
4.	a) Derive the expression for de Broglie wavelength of matter waves.	(4M)
	b) Obtain an expression for wavelength of electron accelerated in a potential V.	(4M)
	c) Calculate the wavelength associated with an electron raised to a potential of 1600 V.	(4M)
5.	a) Derive Schrodinger time independent and time dependent wave equations.	(12M)
6.	a) Deduce Schrodinger time independent wave equation.	(8M)
	b) Write the physical significance of wave function ψ .	(4M)
7.	a) Deduce Schrodinger time dependent wave equation.	(8M)
	b) Write the physical significance of wave function ψ .	(4M)
8.	a) Write the Schrodinger time independent wave equation.	(2M)
	b) Discuss the solution of stationary state Schrodinger equation for particle in a box.	(10M)
9.	a) Outline the behavior of particle in a one dimensional potential box in terms of eigen	
	values and eigen functions.	(8M)
	b) An electron is confined to a one dimensional box of width 2 A, then calculate the	
	energies corresponding to the second and fourth quantum states.	(4M)
10	. a) Deduce the solution of Schrodinger wave equation for particle confined in a box.	(8M)
	b) An electron is confined in a one dimensional potential box having width of $3x10^{-10}$ m	1.
	Estimate the kinetic energy of electron when it is in the ground state.	(4M)
		2

<u>Unit – III</u>

Electron Theory of Metals & Semiconductors

1.	a) What are the salient features of classical free electron theory? Derive an	
	expression for electrical conductivity in a metal. Mention its drawbacks.	(8M)
	b) Find relaxation time of conduction electron in metal if its resistivity is $1.54x10-8\Omega$ -m	
	and it has 5.8×10^{28} conduction electron/m ³ . Given m= 9.1 x 10^{-31} kg, e= 1.6 x 10^{-19} C.	(4M)
2.	a) Describe the quantum free electron theory of metals.	(8M)
	b) Write the advantages of quantum free electron theory over classical free electron	
	theory.	(4M)
3.	a) Write the Fermi-Dirac distribution function.	(4M)
	b) Explain the effect of temperature on Fermi-Dirac distribution.	(4M)
	c) Evaluate the Fermi function for an energy KT above Fermions.	(4M)
4.	a) Write a note on sources of electrical resistance.	(6M)
	b) Describe the origin of energy bands in solids.	(6M)
5.	a) Explain the formation of energy bands in solids with neat diagram.	(6M)
	b) Classify the materials into conductors, semiconductors and insulators based on	
	band theory.	(6M)
6.	a) What are intrinsic semiconductors? Deduce an expression for the carrier concentration	and
	conductivity of intrinsic semiconductors.	(8M)
	b) The following data are given for an intrinsic Ge at 300K. Calculate the conductivity ar	nd
	resistivity of the sample?	
	resistivity of the sample? $(n_i = 2.4 \text{ x} 10^{-19} \text{m}^{-3}, \mu_e = 0.39 \text{ m}^2 \text{-V}^{-1} \text{S}^{-1}, \mu_p = 0.19 \text{ m}^2 \text{-V}^{-1} \text{S}^{-1}).$	(4M)
7.	resistivity of the sample? $(n_i = 2.4 \text{ x} 10^{-19} \text{m}^{-3}, \mu_e = 0.39 \text{ m}^{2}\text{-V}^{-1}\text{S}^{-1}, \mu_p = 0.19 \text{ m}^{2}\text{-V}^{-1}\text{S}^{-1}).$ a) What are extrinsic semiconductors? Explain.	(4M) (6M)
7.	resistivity of the sample? $(n_i = 2.4 \times 10^{-19} \text{m}^{-3}, \mu_e = 0.39 \text{ m}^{2}\text{-V}^{-1}\text{S}^{-1}, \mu_p = 0.19 \text{ m}^{2}\text{-V}^{-1}\text{S}^{-1}).$ a) What are extrinsic semiconductors? Explain. b) Deduce an expression for the carrier concentration of extrinsic semiconductors.	(4M) (6M) (6M)
7. 8.	 resistivity of the sample? (n_i= 2.4 x10⁻¹⁹m⁻³, μ_e = 0.39 m²·V⁻¹S⁻¹, μ_p = 0.19 m²·V⁻¹S⁻¹). a) What are extrinsic semiconductors? Explain. b) Deduce an expression for the carrier concentration of extrinsic semiconductors. a) What are direct and indirect band gap semiconductors? Give examples. 	(4M) (6M) (6M) (6M)
7. 8.	 resistivity of the sample? (n_i= 2.4 x10⁻¹⁹m⁻³, μ_e = 0.39 m²·V⁻¹S⁻¹, μ_p = 0.19 m²·V⁻¹S⁻¹). a) What are extrinsic semiconductors? Explain. b) Deduce an expression for the carrier concentration of extrinsic semiconductors. a) What are direct and indirect band gap semiconductors? Give examples. b) Obtain an expression for life time of charge carriers in excited states. 	(4M) (6M) (6M) (6M) (6M)
7. 8. 9.	 resistivity of the sample? (n_i= 2.4 x10⁻¹⁹m⁻³, µ_e = 0.39 m²·V⁻¹S⁻¹, µ_p = 0.19 m²·V⁻¹S⁻¹). a) What are extrinsic semiconductors? Explain. b) Deduce an expression for the carrier concentration of extrinsic semiconductors. a) What are direct and indirect band gap semiconductors? Give examples. b) Obtain an expression for life time of charge carriers in excited states. a) Explain the diffusion and drift processes in a semiconductor. 	(4M) (6M) (6M) (6M) (6M) (8M)
7. 8. 9.	 resistivity of the sample? (n_i= 2.4 x10⁻¹⁹m⁻³, µ_e = 0.39 m²·V⁻¹S⁻¹, µ_p = 0.19 m²·V⁻¹S⁻¹). a) What are extrinsic semiconductors? Explain. b) Deduce an expression for the carrier concentration of extrinsic semiconductors. a) What are direct and indirect band gap semiconductors? Give examples. b) Obtain an expression for life time of charge carriers in excited states. a) Explain the diffusion and drift processes in a semiconductor. b) Obtain the Einstein's relations. 	(4M) (6M) (6M) (6M) (6M) (8M) (4M)
7. 8. 9.	 resistivity of the sample? (n_i= 2.4 x10⁻¹⁹m⁻³, µ_e = 0.39 m²·V⁻¹S⁻¹, µ_p = 0.19 m²·V⁻¹S⁻¹). a) What are extrinsic semiconductors? Explain. b) Deduce an expression for the carrier concentration of extrinsic semiconductors. a) What are direct and indirect band gap semiconductors? Give examples. b) Obtain an expression for life time of charge carriers in excited states. a) Explain the diffusion and drift processes in a semiconductor. b) Obtain the Einstein's relations. a) What is Hall Effect? Obtain an expression for Hall coefficient. Write the applications 	(4M) (6M) (6M) (6M) (6M) (8M) (4M)
 7. 8. 9. 10 	 resistivity of the sample? (n_i= 2.4 x10⁻¹⁹m⁻³, µ_e = 0.39 m²·V⁻¹S⁻¹, µ_p = 0.19 m²·V⁻¹S⁻¹). a) What are extrinsic semiconductors? Explain. b) Deduce an expression for the carrier concentration of extrinsic semiconductors. a) What are direct and indirect band gap semiconductors? Give examples. b) Obtain an expression for life time of charge carriers in excited states. a) Explain the diffusion and drift processes in a semiconductor. b) Obtain the Einstein's relations. a) What is Hall Effect? Obtain an expression for Hall coefficient. Write the applications of Hall Effect. 	(4M) (6M) (6M) (6M) (8M) (4M)
 7. 8. 9. 10 	resistivity of the sample? ($n_i= 2.4 \times 10^{-19} \text{m}^{-3}$, $\mu_e = 0.39 \text{ m}^2 \cdot \text{V}^{-1} \text{S}^{-1}$, $\mu_p = 0.19 \text{ m}^2 \cdot \text{V}^{-1} \text{S}^{-1}$). a) What are extrinsic semiconductors? Explain. b) Deduce an expression for the carrier concentration of extrinsic semiconductors. a) What are direct and indirect band gap semiconductors? Give examples. b) Obtain an expression for life time of charge carriers in excited states. a) Explain the diffusion and drift processes in a semiconductor. b) Obtain the Einstein's relations. a) What is Hall Effect? Obtain an expression for Hall coefficient. Write the applications of Hall Effect. b) The R _H of a specimen is $3.66 \times 10^{-4} \text{ m}^3 \text{c}^{-1}$. Its resistivity is 8.93×10^{-3} ohm-m.	(4M) (6M) (6M) (6M) (8M) (4M) (8M)

<u>Unit – IV</u>

Lasers and Fiber Optics

1.	a) Write the characteristics of Lasers.	(6M)
	b) Distinguish the spontaneous and stimulated emission of radiation.	(6M)
2.	a) Obtain the relationship between various Einstein coefficients of absorption and	
	emission of radiation.	(6M)
	b) Explain the condition for population inversion.	(6M)
3.	a) Explain the pumping mechanisms to achieve population inversion.	(4M)
	b) Explain the construction and working of He-Ne laser with a neat diagram.	(8M)
4.	a) Explain the construction and working of Nd:YAG laser with a neat diagram.	(8M)
	b) Write any four applications of lasers.	(4M)
5.	a) Explain the construction and working of He-Ne laser with a neat diagram.	(8M)
	b) Explain in detail the applications of lasers in industry and medicine.	(4M)
6.	a) Describe the construction of optical fiber.	(4M)
	b) Explain critical angle of incidence and total internal reflection with neat diagrams.	(4M)
	c) Draw the block diagram of optical fiber communication system.	(4M)
7.	a) Deduce expressions for acceptance angle and numerical aperture of an optical fiber.	(8M)
	b) An optical fiber has a core material of refractive index 1.55 and cladding with refractive	ve
	index 1.50. Calculate its numerical aperture.	(4M)
8.	a) Differentiate step index and graded index fibers.	(8M)
	b) An optical fibre has a core refractive index of 1.44 and cladding refractive index of	
	1.40. Find its θ_a .	(4M)
9.	a) Classify the optical fibers based on their refractive index profile.	(6M)
	b) Explain the propagation of electromagnetic wave through optical fibers.	(6M)
10.	a) Outline the optical fiber communication system.	(6M)
	b) Write any four applications of optical fibers.	(6M)

<u>Unit-V</u>

(Physics of Nanomaterials)

1.	a) Define Nano science and nanotechnology.	(2M)
	b) Explain the basic principles of nanomaterials.	(10M)
2.	a) Describe the classification of nanomaterials with suitable examples.	(4M)
	b) Nanomaterials behave differently in their properties than the bulk materials. Justify.	(8M)
3.	a) What are nanomaterials? Explain their classification.	(3M)
	b) Explain in detail the quantum confinement effect and how it affects the optical	
	and magnetic properties of nanomaterials.	(5M)
	c) Write any two applications of nanomaterials in detail.	(4M)
4.	a) What are nanomaterials? Explain the basic principles of nanomaterials.	(8M)
	b) Outline the properties of nanomaterials that are affected due to increased surface	
	area to volume ratio.	(4M)
5.	a) Explain the synthesis of nanomaterials by ball milling method.	(8M)
	b) Discuss the advantages of nanomaterials.	(4M)
6.	a) Describe the sol-gel method of synthesis of nanomaterials.	(8M)
	b) Explain how the physical and optical properties changes when a material is brought	
	down to Nano scale.	(4M)
7.	a) Describe any one method of fabrication of nanomaterials.	(8M)
	b) Write any four applications of nanomaterials.	(4M)
8.	a) Discuss the advantages of nanomaterials in science and technology.	(2M)
	b) Write a note on the properties of nanomaterials.	(6M)
	c) Explain how nanomaterials are used in the field of medicine and sensor technology.	(4M)
9.	a) Explain the principle of Scanning Electron Microscopy (SEM).	(8M)
	b) Write any two applications of SEM.	(4M)
10	. a) What is Scanning Electron Microscope? Discuss in detail the construction and	
	working of SEM.	(8M)
	b) Explain the strengths and limitations of SEM.	(4M)

SIDDHARTH INSTITUTE OF ENGINEERING AND TECHNOLOGY::PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code: APPLIED PHYSICS(19HS0848) Course & Branch: I - B.Tech - EEE, Year & Sem: I - B.Tech - II - Sem-reg:R19

<u>Unit –I</u> <u>Harmonic Oscillators</u>

a) 1 Second b) 2 Seconds c) 3 Seconds d) None 2. The number of oscillations per second is called as [] a) Frequency b) time period c) Phase d) None 3. The time taken per one complete oscillation is called as [] a) Time period b) Frequency c) Phase d) None 4. The maximum displacement of the particle from mean position is called as [] a) Time period b) wave number c) Phase d) amplitude 5. Units for frequency is [] a) Hertz b) Weber's c) Newton d) None 6. If a body moves front and back repeatedly about the mean position, it is called [] a) simple harmonic oscillation b) Damped harmonic oscillation c) Both d) none 7. The particle or body executing simple harmonic motion is called []] a) Simple harmonic oscillator b) Damped harmonic oscillator: Both d) none 8. The value of phase when t= 0 is called as []] a) Phase difference b) Frequency c) Epoch d) None 9. The displacement of particle at any instant executing SHM is given by []] a) x= a sin (wt+\$\phi\$) b) x= a cos (wt+\$\phi\$) c) x= a tan (wt+\$\phi\$) d) None 10. The velocity of particle at any instant executing SHM is given by []] a) Force constant b) velocity constant c) Momentum d) none 12. A particle moving in x-y plane according to the equation of motion of the particle is []] a) on a straight line b) on an ellipse c) periodic d) simple harmonic 13. Differential equation for simple harmonic oscillator is []] a) $\frac{d^2x}{dt^2} + w^3x = 0$ b) $\frac{d^2x}{dt^2} + w^2x = 0$ c) $\frac{d^2x}{dt^2} + w^4x = 0$ d) $\frac{d^2x}{dt^2} + w^5x = 0$ 14. The angular frequency of simple harmonic oscillator is []] a) $w = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ b) $w = \sqrt{\frac{2}{m}}$ c) $w = \sqrt{\frac{m}{k}}$ d) $w = \sqrt{\frac{1}{m}}$
2. The number of oscillations per second is called as [] a) Frequency b) time period c) Phase d) None 3. The time taken per one complete oscillation is called as [] a) Time period b) Frequency c) Phase d) None 4. The maximum displacement of the particle from mean position is called as [] a) Time period b) wave number c) Phase d) amplitude 5. Units for frequency is [] a) Hertz b) Weber's c) Newton d) None 6. If a body moves front and back repeatedly about the mean position, it is called [] a) simple harmonic oscillation b) Damped harmonic oscillation c) Both d) none 7. The particle or body executing simple harmonic motion is called [] a) Simple harmonic oscillator b) Damped harmonic oscillator: D both d) none 8. The value of phase when t= 0 is called as [] a) Phase difference b) Frequency c) Epoch d) None 9. The displacement of particle at any instant executing SHM is given by [] a) $x = a \sin (wt+\phi)$ b) $x = a \cos (wt+\phi)$ c) $x = a \tan (wt+\phi)$ d) None 10. The velocity of particle at any instant executing SHM is given by [] a) $x = a \sin (wt+\phi)$ b) $x = a \cos (wt+\phi)$ c) $x = a \tan (wt+\phi)$ d) None 11. Force applied per unit length is called as
a) Frequency b) time period c) Phase d) None 3. The time taken per one complete oscillation is called as [] a) Time period b) Frequency c) Phase d) None 4. The maximum displacement of the particle from mean position is called as [] a) Time period b) wave number c) Phase d) amplitude 5. Units for frequency is [] a) Hertz b) Weber's c) Newton d) None 6. If a body moves front and back repeatedly about the mean position, it is called [] a) simple harmonic oscillation b) Damped harmonic oscillation c) Both d) none 7. The particle or body executing simple harmonic motion is called [] a) Simple harmonic oscillator b) Damped harmonic oscillator:) Both d) none 8. The value of phase when t= 0 is called as [] a) Phase difference b) Frequency c) Epoch d) None 9. The displacement of particle at any instant executing SHM is given by [] a) $x= a \sin (wt+\phi)$ b) $x= a \cos (wt+\phi)$ c) $x= a \tan (wt+\phi)$ d) None 10. The velocity of particle at any instant executing SHM is given by [] a) $v= a w \sin (wt+\phi)$ b) $v= a w \cos (wt+\phi)$ c) $v= a \tan (wt+\phi)$ d) None 11. Force constant b) velocity constant c) Momentum d) none 12. A particle moving in x-y plane according to the equation of motion of the particle is [] a) on a straight line b) on an ellipse c) periodic d) simple harmonic 13. Differential equation for simple harmonic oscillator is [] a) $w = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ b) $w = \sqrt{\frac{2}{m}}$ c) $w = \sqrt{\frac{m}{k}}$ d) $w = \sqrt{\frac{i}{m}}$
3. The time taken per one complete oscillation is called as [] a) Time period b) Frequency c) Phase d) None 4. The maximum displacement of the particle from mean position is called as [] a) Time period b) wave number c) Phase d) amplitude 5. Units for frequency is [] a) Hertz b) Weber's c) Newton d) None 6. If a body moves front and back repeatedly about the mean position, it is called [] a) simple harmonic oscillation b) Damped harmonic oscillation c) Both d) none 7. The particle or body executing simple harmonic motion is called [] a) Simple harmonic oscillator b) Damped harmonic oscillatorc) Both d) none 8. The value of phase when t= 0 is called as [] a) Phase difference b) Frequency c) Epoch d) None 9. The displacement of particle at any instant executing SHM is given by [] a) $x=a \sin(wt+\phi)$ b) $x=a \cos(wt+\phi)$ c) $x=a \tan(wt+\phi)$ d) None 10. The velocity of particle at any instant executing SHM is given by [] a) $x=a \sin(wt+\phi)$ b) $v=a w \cos(wt+\phi)$ c) $v=a \tan(wt+\phi)$ d) None 11. Force constant b) velocity constant c) Momentum d) none 12. A particle moving in x-y plane according to the equation of motion of the particle is [] a) on a straight line b) on an ellipse c) periodic d) simple harmonic 13. Differential equation for simple harmonic oscillator is [] a) $w = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ b) $w = \sqrt{\frac{2}{m}}$ c) $w = \sqrt{\frac{m}{k}}$ d) $w = \sqrt{\frac{i}{m}}$
a) Time period b) Frequency c) Phase d) None 4. The maximum displacement of the particle from mean position is called as [] a) Time period b) wave number c) Phase d) amplitude 5. Units for frequency is [] a) Hertz b) Weber's c) Newton d) None 6. If a body moves front and back repeatedly about the mean position, it is called [] a) simple harmonic oscillation b) Damped harmonic oscillation c) Both d) none 7. The particle or body executing simple harmonic motion is called [] a) Simple harmonic oscillator b) Damped harmonic oscillatorc) Both d) none 8. The value of phase when t= 0 is called as [] a) Phase difference b) Frequency c) Epoch d) None 9. The displacement of particle at any instant executing SHM is given by []] a) $x=a \sin(wt+\phi)$ b) $x=a \cos(wt+\phi)$ c) $x=a \tan(wt+\phi)$ d) None 10. The velocity of particle at any instant executing SHM is given by []] a) $y=a w \sin(wt+\phi)$ b) $v=a w \cos(wt+\phi)$ c) $v=a \tan(wt+\phi)$ d) None 11. Force applied per unit length is called as []] a) Force constant b) velocity constant c) Momentum d) none 12. A particle moving in x-y plane according to the equation of motion of the particle is []] a) on a straight line b) on an ellipse c) periodic d) simple harmonic 13. Differential equation for simple harmonic oscillator is []] a) $\frac{d^2x}{dt^2} + w^3x = 0$ b) $\frac{d^2x}{dt^2} + w^2x = 0$ c) $\frac{d^2x}{dt^2} + w^4x = 0$ d) $\frac{d^2x}{dt^2} + w^5x = 0$ 14. The angular frequency of simple harmonic oscillator is []] a) $w = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ b) $w = \sqrt{\frac{2}{m}}$ c) $w = \sqrt{\frac{m}{k}}$ d) $w = \sqrt{\frac{i}{m}}$
4. The maximum displacement of the particle from mean position is called as [] a) Time period b) wave number c) Phase d) amplitude 5. Units for frequency is [] a) Hertz b) Weber's c) Newton d) None 6. If a body moves front and back repeatedly about the mean position, it is called [] a) simple harmonic oscillation b) Damped harmonic oscillation c) Both d) none 7. The particle or body executing simple harmonic motion is called []] a) Simple harmonic oscillator b) Damped harmonic oscillatorc) Both d) none 8. The value of phase when t= 0 is called as []] a) Phase difference b) Frequency c) Epoch d) None 9. The displacement of particle at any instant executing SHM is given by []] a) $x= a \sin(wt+\phi)$ b) $x= a \cos(wt+\phi)$ c) $x= a \tan(wt+\phi)$ d) None 10. The velocity of particle at any instant executing SHM is given by []] a) $v= a w \sin(wt+\phi)$ b) $v= a w \cos(wt+\phi)$ c) $v= a \tan(wt+\phi)$ d) None 11. Force applied per unit length is called as []] a) Force constant b) velocity constant c) Momentum d) none 12. A particle moving in x-y plane according to the equation of motion of the particle is []] a) on a straight line b) on an ellipse c) periodic d) simple harmonic 13. Differential equation for simple harmonic oscillator is []] a) $\frac{d^2x}{dt^2} + w^3x = 0$ b) $\frac{d^2x}{dt^2} + w^2x = 0$ c) $\frac{d^2x}{dt^2} + w^4x = 0$ d) $\frac{d^2x}{dt^2} + w^5x = 0$ 14. The angular frequency of simple harmonic oscillator is []] a) $w = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ b) $w = \sqrt{\frac{2}{m}}$ c) $w = \sqrt{\frac{m}{k}}$ d) $w = \sqrt{\frac{i}{m}}$
a) Time period b) wave number c) Phase d) amplitude 5. Units for frequency is [] a) Hertz b) Weber's c) Newton d) None 6. If a body moves front and back repeatedly about the mean position, it is called [] a) simple harmonic oscillation b) Damped harmonic oscillation c) Both d) none 7. The particle or body executing simple harmonic motion is called []] a) Simple harmonic oscillator b) Damped harmonic oscillatorc) Both d) none 8. The value of phase when t= 0 is called as []] a) Phase difference b) Frequency c) Epoch d) None 9. The displacement of particle at any instant executing SHM is given by []] a) x= a sin (wt+ ϕ) b) x= a cos (wt+ ϕ) c) x= a tan (wt+ ϕ) d) None 10. The velocity of particle at any instant executing SHM is given by []] a) v= a w sin (wt+ ϕ) b) v= a w cos (wt+ ϕ) c) v= a tan (wt+ ϕ) d) None 11. Force applied per unit length is called as []] a) Force constant b) velocity constant c) Momentum d) none 12. A particle moving in x-y plane according to the equation of motion of the particle is []] a) on a straight line b) on an ellipse c) periodic d) simple harmonic 13. Differential equation for simple harmonic oscillator is []] a) $\frac{d^2x}{dt^2} + w^3x = 0$ b) $\frac{d^2x}{dt^2} + w^2x = 0$ c) $\frac{d^2x}{dt^2} + w^4x = 0$ d) $\frac{d^2x}{dt^2} + w^5x = 0$ 14. The angular frequency of simple harmonic oscillator is []] a) $w = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ b) $w = \sqrt{\frac{2}{m}}$ c) $w = \sqrt{\frac{m}{k}}$ d) $w = \sqrt{\frac{i}{m}}$
5. Units for frequency is [] a) Hertz b) Weber's c) Newton d) None 6. If a body moves front and back repeatedly about the mean position, it is called [] a) simple harmonic oscillation b) Damped harmonic oscillation c) Both d) none 7. The particle or body executing simple harmonic motion is called [] a) Simple harmonic oscillator b) Damped harmonic oscillatorc) Both d) none 8. The value of phase when t=0 is called as [] a) Phase difference b) Frequency c) Epoch d) None 9. The displacement of particle at any instant executing SHM is given by [] a) x= a sin (wt+ ϕ) b) x= a cos (wt+ ϕ) c) x= a tan (wt+ ϕ) d) None 10. The velocity of particle at any instant executing SHM is given by [] a) v= a w sin (wt+ ϕ) b) v= a w cos (wt+ ϕ) c) v= a tan (wt+ ϕ) d) None 11. Force applied per unit length is called as [] a) Force constant b) velocity constant c) Momentum d) none 12. A particle moving in x-y plane according to the equation of motion of the particle is [] a) on a straight line b) on an ellipse c) periodic d) simple harmonic 13. Differential equation for simple harmonic oscillator is [] a) $\frac{d^2x}{dt^2} + w^3x = 0$ b) $\frac{d^2x}{dt^2} + w^2x = 0$ c) $\frac{d^2x}{dt^2} + w^4x = 0$ d) $\frac{d^2x}{dt^2} + w^5x = 0$ 14. The angular frequency of simple harmonic oscillator is [] a) $w = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ b) $w = \sqrt{\frac{2}{m}}$ c) $w = \sqrt{\frac{m}{k}}$ d) $w = \sqrt{\frac{i}{m}}$
a) Hertz b) Weber's c) Newton d) None 6. If a body moves front and back repeatedly about the mean position, it is called [] a) simple harmonic oscillation b) Damped harmonic oscillation c) Both d) none 7. The particle or body executing simple harmonic motion is called [] a) Simple harmonic oscillator b) Damped harmonic oscillatorc) Both d) none 8. The value of phase when t= 0 is called as [] a) Phase difference b) Frequency c) Epoch d) None 9. The displacement of particle at any instant executing SHM is given by []] a) x= a sin (wt+ ϕ) b) x= a cos (wt+ ϕ) c) x= a tan (wt+ ϕ) d) None 10. The velocity of particle at any instant executing SHM is given by []] a) v= a w sin (wt+ ϕ) b) v= a w cos (wt+ ϕ) c) v= a tan (wt+ ϕ) d) None 11. Force applied per unit length is called as []] a) Force constant b) velocity constant c) Momentum d) none 12. A particle moving in x-y plane according to the equation of motion of the particle is []] a) on a straight line b) on an ellipse c) periodic d) simple harmonic 13. Differential equation for simple harmonic oscillator is []] a) $\frac{d^2x}{dt^2} + w^3x = 0$ b) $\frac{d^2x}{dt^2} + w^2x = 0$ c) $\frac{d^2x}{dt^2} + w^4x = 0$ d) $\frac{d^2x}{dt^2} + w^5x = 0$ 14. The angular frequency of simple harmonic oscillator is []] a) $w = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ b) $w = \sqrt{\frac{2}{m}}$ c) $w = \sqrt{\frac{m}{k}}$ d) $w = \sqrt{\frac{i}{m}}$
6. If a body moves front and back repeatedly about the mean position, it is called [] a) simple harmonic oscillation b) Damped harmonic oscillation c) Both d) none 7. The particle or body executing simple harmonic motion is called [] a) Simple harmonic oscillator b) Damped harmonic oscillatorc) Both d) none 8. The value of phase when t= 0 is called as [] a) Phase difference b) Frequency c) Epoch d) None 9. The displacement of particle at any instant executing SHM is given by []] a) x= a sin (wt+\$\phi\$) b) x= a cos (wt+\$\phi\$) c) x= a tan (wt+\$\phi\$) d) None 10. The velocity of particle at any instant executing SHM is given by []] a) v= a w sin (wt+\$\phi\$) b) v= a w cos (wt+\$\phi\$) c) v= a tan (wt+\$\phi\$) d) None 11. Force applied per unit length is called as []] a) Force constant b) velocity constant c) Momentum d) none 12. A particle moving in x-y plane according to the equation of motion of the particle is []] a) on a straight line b) on an ellipse c) periodic d) simple harmonic 13. Differential equation for simple harmonic oscillator is []] a) $\frac{d^2x}{dt^2} + w^3x = 0$ b) $\frac{d^2x}{dt^2} + w^2x = 0$ c) $\frac{d^2x}{dt^2} + w^4x = 0$ d) $\frac{d^2x}{dt^2} + w^5x = 0$ 14. The angular frequency of simple harmonic oscillator is []] a) $w = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ b) $w = \sqrt{\frac{2}{m}}$ c) $w = \sqrt{\frac{m}{k}}$ d) $w = \sqrt{\frac{i}{m}}$
a) simple harmonic oscillation b) Damped harmonic oscillation c) Both d) none 7. The particle or body executing simple harmonic motion is called [] a) Simple harmonic oscillator b) Damped harmonic oscillatorc) Both d) none 8. The value of phase when t= 0 is called as a) Phase difference b) Frequency c) Epoch d) None 9. The displacement of particle at any instant executing SHM is given by [] a) x= a sin (wt+ ϕ) b) x= a cos (wt+ ϕ) c) x= a tan (wt+ ϕ) d) None 10. The velocity of particle at any instant executing SHM is given by [] a) v= a w sin (wt+ ϕ) b) v= a w cos (wt+ ϕ) c) v= a tan (wt+ ϕ) d) None 11. Force applied per unit length is called as [] a) Force constant b) velocity constant c) Momentum d) none 12. A particle moving in x-y plane according to the equation of motion of the particle is [] a) on a straight line b) on an ellipse c) periodic d) simple harmonic 13. Differential equation for simple harmonic oscillator is [] a) $\frac{d^2x}{dt^2} + w^3x = 0$ b) $\frac{d^2x}{dt^2} + w^2x = 0$ c) $\frac{d^2x}{dt^2} + w^4x = 0$ d) $\frac{d^2x}{dt^2} + w^5x = 0$ 14. The angular frequency of simple harmonic oscillator is [] a) $w = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ b) $w = \sqrt{\frac{2}{m}}$ c) $w = \sqrt{\frac{m}{k}}$ d) $w = \sqrt{\frac{i}{m}}$
d) none 7. The particle or body executing simple harmonic motion is called [] a) Simple harmonic oscillator b) Damped harmonic oscillatorc) Both d) none 8. The value of phase when t= 0 is called as a) Phase difference b) Frequency c) Epoch d) None 9. The displacement of particle at any instant executing SHM is given by [] a) x= a sin (wt+ ϕ) b) x= a cos (wt+ ϕ) c) x= a tan (wt+ ϕ) d) None 10. The velocity of particle at any instant executing SHM is given by [] a) v= a w sin (wt+ ϕ) b) v= a w cos (wt+ ϕ) c) v= a tan (wt+ ϕ) d) None 11. Force applied per unit length is called as [] a) Force constant b) velocity constant c) Momentum d) none 12. A particle moving in x-y plane according to the equation of motion of the particle is [] a) on a straight line b) on an ellipse c) periodic d) simple harmonic 13. Differential equation for simple harmonic oscillator is [] a) $\frac{d^2x}{dt^2} + w^3x = 0$ b) $\frac{d^2x}{dt^2} + w^2x = 0$ c) $\frac{d^2x}{dt^2} + w^4x = 0$ d) $\frac{d^2x}{dt^2} + w^5x = 0$ 14. The angular frequency of simple harmonic oscillator is [] a) $w = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ b) $w = \sqrt{\frac{2}{m}}$ c) $w = \sqrt{\frac{m}{k}}$ d) $w = \sqrt{\frac{i}{m}}$
7. The particle or body executing simple harmonic motion is called [] a) Simple harmonic oscillator b) Damped harmonic oscillatorc) Both d) none 8. The value of phase when t= 0 is called as [] a) Phase difference b) Frequency c) Epoch d) None 9. The displacement of particle at any instant executing SHM is given by []] a) x= a sin (wt+\$\phi\$) b) x= a cos (wt+\$\phi\$) c) x= a tan (wt+\$\phi\$) d) None 10. The velocity of particle at any instant executing SHM is given by []] a) v= a w sin (wt+\$\phi\$) b) v= a w cos (wt+\$\phi\$) c) v= a tan (wt+\$\phi\$) d) None 11. Force applied per unit length is called as []] a) Force constant b) velocity constant c) Momentum d) none 12. A particle moving in x-y plane according to the equation of motion of the particle is []] a) on a straight line b) on an ellipse c) periodic d) simple harmonic 13. Differential equation for simple harmonic oscillator is []] a) $\frac{d^2x}{dt^2} + w^3x = 0$ b) $\frac{d^2x}{dt^2} + w^2x = 0$ c) $\frac{d^2x}{dt^2} + w^4x = 0$ d) $\frac{d^2x}{dt^2} + w^5x = 0$ 14. The angular frequency of simple harmonic oscillator is []] a) $w = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ b) $w = \sqrt{\frac{2}{m}}$ c) $w = \sqrt{\frac{m}{k}}$ d) $w = \sqrt{\frac{i}{m}}$
a) Simple harmonic oscillator b) Damped harmonic oscillatorc) Both d) none 8. The value of phase when t= 0 is called as [] a) Phase difference b) Frequency c) Epoch d) None 9. The displacement of particle at any instant executing SHM is given by [] a) x= a sin (wt+\$\phi\$) b) x= a cos (wt+\$\phi\$) c) x= a tan (wt+\$\phi\$) d) None 10. The velocity of particle at any instant executing SHM is given by [] a) v= a w sin (wt+\$\phi\$) b) v= a w cos (wt+\$\phi\$) c) v= a tan (wt+\$\phi\$) d) None 11. Force applied per unit length is called as [] a) Force constant b) velocity constant c) Momentum d) none 12. A particle moving in x-y plane according to the equation of motion of the particle is [] a) on a straight line b) on an ellipse c) periodic d) simple harmonic 13. Differential equation for simple harmonic oscillator is [] a) $\frac{d^2x}{dt^2} + w^3x = 0$ b) $\frac{d^2x}{dt^2} + w^2x = 0$ c) $\frac{d^2x}{dt^2} + w^4x = 0$ d) $\frac{d^2x}{dt^2} + w^5x = 0$ 14. The angular frequency of simple harmonic oscillator is [] a) $w = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ b) $w = \sqrt{\frac{2}{m}}$ c) $w = \sqrt{\frac{m}{k}}$ d) $w = \sqrt{\frac{i}{m}}$
8. The value of phase when t= 0 is called as [] a) Phase difference b) Frequency c) Epoch d) None 9. The displacement of particle at any instant executing SHM is given by [] a) x= a sin (wt+\$\phi\$) b) x= a cos (wt+\$\phi\$) c) x= a tan (wt+\$\phi\$) d) None 10. The velocity of particle at any instant executing SHM is given by [] a) v= a w sin (wt+\$\phi\$) b) v= a w cos (wt+\$\phi\$) c) v= a tan (wt+\$\phi\$) d) None 11. Force applied per unit length is called as [] a) Force constant b) velocity constant c) Momentum d) none 12. A particle moving in x-y plane according to the equation of motion of the particle is [] a) on a straight line b) on an ellipse c) periodic d) simple harmonic 13. Differential equation for simple harmonic oscillator is [] a) $\frac{d^2x}{dt^2} + w^3x = 0$ b) $\frac{d^2x}{dt^2} + w^2x = 0$ c) $\frac{d^2x}{dt^2} + w^4x = 0$ d) $\frac{d^2x}{dt^2} + w^5x = 0$ 14. The angular frequency of simple harmonic oscillator is [] a) $w = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ b) $w = \sqrt{\frac{2}{m}}$ c) $w = \sqrt{\frac{m}{k}}$ d) $w = \sqrt{\frac{i}{m}}$
a) Phase difference b) Frequency c) Epoch d) None 9. The displacement of particle at any instant executing SHM is given by [] a) $x = a \sin(wt+\phi)$ b) $x = a \cos(wt+\phi)$ c) $x = a \tan(wt+\phi)$ d) None 10. The velocity of particle at any instant executing SHM is given by [] a) $v = a w \sin(wt+\phi)$ b) $v = a w \cos(wt+\phi)$ c) $v = a \tan(wt+\phi)$ d) None 11. Force applied per unit length is called as [] a) Force constant b) velocity constant c) Momentum d) none 12. A particle moving in x-y plane according to the equation of motion of the particle is [] a) on a straight line b) on an ellipse c) periodic d) simple harmonic 13. Differential equation for simple harmonic oscillator is [] a) $\frac{d^2x}{dt^2} + w^3x = 0$ b) $\frac{d^2x}{dt^2} + w^2x = 0$ c) $\frac{d^2x}{dt^2} + w^4x = 0$ d) $\frac{d^2x}{dt^2} + w^5x = 0$ 14. The angular frequency of simple harmonic oscillator is [] a) $w = \frac{1}{2\pi}\sqrt{\frac{k}{m}}$ b) $w = \sqrt{\frac{2}{m}}$ c) $w = \sqrt{\frac{m}{k}}$ d) $w = \sqrt{\frac{i}{m}}$
9. The displacement of particle at any instant executing SHM is given by [] a) $x = a \sin(wt+\phi)$ b) $x = a \cos(wt+\phi)$ c) $x = a \tan(wt+\phi)$ d) None 10. The velocity of particle at any instant executing SHM is given by [] a) $v = a w \sin(wt+\phi)$ b) $v = a w \cos(wt+\phi)$ c) $v = a \tan(wt+\phi)$ d) None 11. Force applied per unit length is called as [] a) Force constant b) velocity constant c) Momentum d) none 12. A particle moving in x-y plane according to the equation of motion of the particle is [] a) on a straight line b) on an ellipse c) periodic d) simple harmonic 13. Differential equation for simple harmonic oscillator is [] a) $\frac{d^2x}{dt^2} + w^3x = 0$ b) $\frac{d^2x}{dt^2} + w^2x = 0$ c) $\frac{d^2x}{dt^2} + w^4x = 0$ d) $\frac{d^2x}{dt^2} + w^5x = 0$ 14. The angular frequency of simple harmonic oscillator is [] a) $w = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ b) $w = \sqrt{\frac{2}{m}}$ c) $w = \sqrt{\frac{m}{k}}$ d) $w = \sqrt{\frac{i}{m}}$
a) $x = a \sin(wt+\phi)$ b) $x = a \cos(wt+\phi)$ c) $x = a \tan(wt+\phi)$ d) None 10. The velocity of particle at any instant executing SHM is given by [] a) $v = a w \sin(wt+\phi)$ b) $v = a w \cos(wt+\phi)$ c) $v = a \tan(wt+\phi)$ d) None 11. Force applied per unit length is called as [] a) Force constant b) velocity constant c) Momentum d) none 12. A particle moving in x-y plane according to the equation of motion of the particle is [] a) on a straight line b) on an ellipse c) periodic d) simple harmonic 13. Differential equation for simple harmonic oscillator is [] $a) \frac{d^2x}{dt^2} + w^3x = 0$ b) $\frac{d^2x}{dt^2} + w^2x = 0$ c) $\frac{d^2x}{dt^2} + w^4x = 0$ d) $\frac{d^2x}{dt^2} + w^5x = 0$ 14. The angular frequency of simple harmonic oscillator is [] $a) w = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ b) $w = \sqrt{\frac{2}{m}}$ c) $w = \sqrt{\frac{m}{k}}$ d) $w = \sqrt{\frac{i}{m}}$
10. The velocity of particle at any instant executing SHM is given by [] a) v= a w sin (wt+\$\phi\$) b) v= a w cos (wt+\$\phi\$) c) v= a tan (wt+\$\phi\$) d) None 11. Force applied per unit length is called as [] a) Force constant b) velocity constant c) Momentum d) none 12. A particle moving in x-y plane according to the equation of motion of the particle is [] a) on a straight line b) on an ellipse c) periodic d) simple harmonic 13. Differential equation for simple harmonic oscillator is [] a) $\frac{d^2x}{dt^2} + w^3x = 0$ b) $\frac{d^2x}{dt^2} + w^2x = 0$ c) $\frac{d^2x}{dt^2} + w^4x = 0$ d) $\frac{d^2x}{dt^2} + w^5x = 0$ 14. The angular frequency of simple harmonic oscillator is [] a) $w = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ b) $w = \sqrt{\frac{2}{m}}$ c) $w = \sqrt{\frac{m}{k}}$ d) $w = \sqrt{\frac{i}{m}}$
a) v= a w sin (wt+ ϕ) b) v= a w cos (wt+ ϕ) c) v= a tan (wt+ ϕ) d) None 11. Force applied per unit length is called as [] a) Force constant b) velocity constant c) Momentum d) none 12. A particle moving in x-y plane according to the equation of motion of the particle is [] a) on a straight line b) on an ellipse c) periodic d) simple harmonic 13. Differential equation for simple harmonic oscillator is [] a) $\frac{d^2x}{dt^2} + w^3x = 0$ b) $\frac{d^2x}{dt^2} + w^2x = 0$ c) $\frac{d^2x}{dt^2} + w^4x = 0$ d) $\frac{d^2x}{dt^2} + w^5x = 0$ 14. The angular frequency of simple harmonic oscillator is [] a) $w = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ b) $w = \sqrt{\frac{2}{m}}$ c) $w = \sqrt{\frac{m}{k}}$ d) $w = \sqrt{\frac{i}{m}}$
11. Force applied per unit length is called as [] a) Force constant b) velocity constant c) Momentum d) none 12. A particle moving in x-y plane according to the equation of motion of the particle is [] a) on a straight line b) on an ellipse c) periodic d) simple harmonic 13. Differential equation for simple harmonic oscillator is [] a) $\frac{d^2x}{dt^2} + w^3x = 0$ b) $\frac{d^2x}{dt^2} + w^2x = 0$ c) $\frac{d^2x}{dt^2} + w^4x = 0$ d) $\frac{d^2x}{dt^2} + w^5x = 0$ 14. The angular frequency of simple harmonic oscillator is [] a) $w = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ b) $w = \sqrt{\frac{2}{m}}$ c) $w = \sqrt{\frac{m}{k}}$ d) $w = \sqrt{\frac{i}{m}}$
a) Force constant b) velocity constant c) Momentum d) none 12. A particle moving in x-y plane according to the equation of motion of the particle is [] a) on a straight line b) on an ellipse c) periodic d) simple harmonic 13. Differential equation for simple harmonic oscillator is [] a) $\frac{d^2 x}{dt^2} + w^3 x = 0$ b) $\frac{d^2 x}{dt^2} + w^2 x = 0$ c) $\frac{d^2 x}{dt^2} + w^4 x = 0$ d) $\frac{d^2 x}{dt^2} + w^5 x = 0$ 14. The angular frequency of simple harmonic oscillator is [] a) $w = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ b) $w = \sqrt{\frac{2}{m}}$ c) $w = \sqrt{\frac{m}{k}}$ d) $w = \sqrt{\frac{i}{m}}$
12. A particle moving in x-y plane according to the equation of motion of the particle is [a) on a straight line b) on an ellipse c) periodic d) simple harmonic 13. Differential equation for simple harmonic oscillator is [a) $\frac{d^2x}{dt^2} + w^3x = 0$ b) $\frac{d^2x}{dt^2} + w^2x = 0$ c) $\frac{d^2x}{dt^2} + w^4x = 0$ d) $\frac{d^2x}{dt^2} + w^5x = 0$ 14. The angular frequency of simple harmonic oscillator is [a) $w = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ b) $w = \sqrt{\frac{2}{m}}$ c) $w = \sqrt{\frac{m}{k}}$ d) $w = \sqrt{\frac{i}{m}}$
a) on a straight line b) on an ellipse c) periodic d) simple harmonic 13. Differential equation for simple harmonic oscillator is [] a) $\frac{d^2x}{dt^2} + w^3x = 0$ b) $\frac{d^2x}{dt^2} + w^2x = 0$ c) $\frac{d^2x}{dt^2} + w^4x = 0$ d) $\frac{d^2x}{dt^2} + w^5x = 0$ 14. The angular frequency of simple harmonic oscillator is [] a) $w = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ b) $w = \sqrt{\frac{2}{m}}$ c) $w = \sqrt{\frac{m}{k}}$ d) $w = \sqrt{\frac{i}{m}}$
13. Differential equation for simple harmonic oscillator is (a) $\frac{d^2 x}{dt^2} + w^3 x = 0$ (b) $\frac{d^2 x}{dt^2} + w^2 x = 0$ (c) $\frac{d^2 x}{dt^2} + w^4 x = 0$ (d) $\frac{d^2 x}{dt^2} + w^5 x = 0$ 14. The angular frequency of simple harmonic oscillator is (a) $w = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ (b) $w = \sqrt{\frac{2}{m}}$ (c) $w = \sqrt{\frac{m}{k}}$ (d) $w = \sqrt{\frac{i}{m}}$ 15. The time is the formula between the terms in the formula between terms in terms in the formula between terms in terms in the formula between terms in terms
a) $\frac{d^2x}{dt^2} + w^3x = 0$ b) $\frac{d^2x}{dt^2} + w^2x = 0$ c) $\frac{d^2x}{dt^2} + w^4x = 0$ d) $\frac{d^2x}{dt^2} + w^5x = 0$ 14. The angular frequency of simple harmonic oscillator is [] a) $w = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ b) $w = \sqrt{\frac{2}{m}}$ c) $w = \sqrt{\frac{m}{k}}$ d) $w = \sqrt{\frac{i}{m}}$
a) $\frac{dt^2}{dt^2} + w^3 x = 0$ b) $\frac{dt^2}{dt^2} + w^2 x = 0$ c) $\frac{dt^2}{dt^2} + w^4 x = 0$ d) $\frac{dt^2}{dt^2} + w^3 x = 0$ 14. The angular frequency of simple harmonic oscillator is [] a) $w = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ b) $w = \sqrt{\frac{2}{m}}$ c) $w = \sqrt{\frac{m}{k}}$ d) $w = \sqrt{\frac{i}{m}}$
14. The angular frequency of simple harmonic oscillator is () () () () () () () () () (
a) $w = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ b) $w = \sqrt{\frac{2}{m}}$ c) $w = \sqrt{\frac{m}{k}}$ d) $w = \sqrt{\frac{i}{m}}$
a) $W = \frac{1}{2\pi} \sqrt{\frac{m}{m}}$ b) $W = \sqrt{\frac{m}{m}}$ c) $W = \sqrt{\frac{1}{m}}$ d) $W = \sqrt{\frac{m}{m}}$
15. The time period of simple harmonic oscillator is
$1 k \dots k m \dots k$
a) $T = \frac{1}{2\pi} \sqrt{\frac{n}{m}}$ b) $T = 2\pi \sqrt{\frac{n}{m}}$ c) $w = \sqrt{\frac{n}{k}}$ d) $w = \sqrt{\frac{n}{m}}$
16 If the frequency of the oscillator is decreases with respect to the time such an oscillator is
called
a) Simple harmonic oscillator b) Damped harmonic oscillator c)Bothd) none
17 The particle or body executing damped harmonic motion is called a
a) Simple harmonic oscillator b) Damped harmonic oscillator c) Roth
d) none

	QUESTION BAN	X 2019
18. Differential equation for simple harmonic oscillator is		[]
a) $\frac{d^2 x}{dt^2} + 2b\frac{dx}{dt} + w^2 x = 0$ b) $\frac{d^2 x}{dt^2} + 3b\frac{dx}{dt} + w$	$y^3x = 0$	
c) $\frac{d^{2}x}{dt^{2}} + w^{2}x = 0$ d) $\frac{d^{2}x}{dt^{2}} + w^{4}x = 0$		
19. If the oscillator returns to equilibrium without oscillati	ng is called as	[]
a) Critical damped b) under damped c) Ov	er damped d) None	
20. If the oscillator returns to equilibrium as quickly as po	ssible without oscillations	г 1
a) Critical damped b) under damped c) Ov	er damped d) None	
21 The system oscillating with the decreasing amplitude i	s amped d) None	[]
a) Critical damped b) under damped c) Ov	er damped d) None	LJ
22. In cars, springs are damped by	I I I I I I I I I I I I I I I I I I I	[]
a) Engine b) Tyres c) Sho	ock absorbers d) None	
23. Oscillations become damped due to		[]
a) Normal force b) Friction c) Par	callel force d) Tangential	orce
24. The vibrations in which the body vibrates with a frequ	ency other than its natural	r .
frequency under the action of external force is called –		[]
a) Simple harmonic vibrations b) Forced vibrations	c) Damped vibrations d) None	r ı
a) Natural frequency b) Tate of decay of amplitud	(a, c) Both a and (b, d) None	L J
26 What is meant by critical damping coefficient?	te e) both a and b e) None	۲ I
a) Frequency of damped free vibrations is less than zer	. 0	
b) The motion is periodic in nature		
c) Both a and b		
d) None		
27. When there is reduction in amplitude over every cycle	of vibration, then the body is sa	id
to have		
a) Free vibrations b) Forced vibrations c) Damped vi 28 Longitudinal vibrations are said to accur when the new	ibrations d) None	r ı
a) Perpendicular to its axis b) Parallel to its axis c) I	n a circle about the axis d) Non	
29 When a body is subjected to transverse vibrations the	stress induced in a body will be	
a) Shear stress b) Tensile stress c) Compressi	ve stress d) None	LJ
30. The angular frequency of SHM is equals to		[]
a) 2π b) 2π c) $2\pi f$	d) None	
31. As amplitude of resonant vibrations decreases, degree	of damping is	[]
a) Increases b) Decreases c) Same	d) None	
32. In SHM, object acceleration depends upon		[]
a) Displacement from equilibrium b) magnitude	of restoring force c) Both a and	1 b
a) None 22. The phenomenon of making a body vibrate with its pa	tural fraguency under the influe	200
of another vibrating body with the same frequency is co	alled	
a) Forced vibrations b) Natural vibrations	c) Resonance d) None	LJ
34. Collapse of bridge at the time of soldier marching is at	n example of	۲ I
a) Forced vibrations b) Natural vibrations	c) Resonance d) None	
35. Optical resonance is an example of	, , ,	[]
a) Forced vibrations b) Natural vibrations	c) Resonance d) None	
36. Tuning of radio or transistor is an example of		[]
a) Forced vibrations b) Natural vibrations	c) Resonance d) None	r -
37. Creation of coherent light in LASER system is an exar	nple of	[]]
a) Forced vibrations b) Natural vibrations	c) Resonance d) None	r J
30. Guillar Siring IS an example for a) Damped oscillator (b) Natural vibrations	c) Reconance d) None	LJ
a) Damped Osemator () Natural Viorations	c) resonance (1) none	

	QUESTION BANK	2019
39. Simple pendulum is an example ofa) Simple harmonic oscillator b) Damped harmonic oscillator	c) Forced vibrations]
d) None40. A steel ball rolling on curved disc is an example ofa) Simple harmonic oscillator b) Damped harmonic oscillator	[c) Both a and b d) None]

<u>Unit - II</u> <u>Principles of Quantum Mechanics</u>

1. V	When an electron is acc	elerated by a potential	of V volts. Then the de	Broglie	
W	vavelength is given by			[]
	A) $\frac{12.26}{\sqrt{V}} nm$	B) $\frac{26.12}{\sqrt{V}}A^0$	C) $\frac{12.26}{\sqrt{V}} \mu m$	D) $\frac{12.26}{\sqrt{V}}A^0$	
2. A	an electron, neutron and	d proton have the same	wavelength. Which pa	rticle has	
g	reater velocity?			[]
<u>л</u>	A) Neutron	B) Proton	C) Electron	D) All	1
3. P	robability density of w	ave function is		D)]
4 11	A) Ψ	$\mathbf{B} \mathbf{\Psi} ^{2}$	$C) \Psi \Psi \Psi$	D) none	
4. V	when an electron is acc	elerated through a pote	ntial field of 100 v the	n it is associated	1
W	ith a wave of waveleng	gth equal to	0) 10.00		J
<i>с</i> т	A) 0.1226 nm	B) 1.226 nm	C) 12.26 nm	D) 122.6 nm	
5. 1	he wavelength of de B	roglie wave associated	with a moving particle	is independent	-
0	f its				J
<	A) Mass	B) Charge	C) Velocity	D) Momentum	
6. li	E is the kinetic energy	y of the material particl	e of mass m then the d	e Broglie	_
W	avelength is			[]
	A) $\frac{h}{\sqrt{2}}$	B) $\frac{\sqrt{2mE}}{L}$	C) $h\sqrt{2mE}$	D) $\frac{h}{2}$	
7 Th	$\sqrt{2mE}$	h icles is	,	² 2mE	1
/. 11	A) Wavelength	P) Frequency	C) Amplitudo	D) Momentum	Ţ
от	A) waveleligui	b) Flequency	C) Amplitude	D) Momentum	1
o. 1	A) Destine as by	D) Wave or h	C) Dhoton only	D) Dry hoth A or	נ
от	A) Particle Only The wave function Ψ as	b) wave only	C) Photon only	D) by boun A an	и Б 1
9. 1	A) Is not an observe	ble quantity B de	, particle og not have direct phys	ical maaning	Ţ
	(\mathbf{A}) is not all observa	D = quantity D = 0	of the above	sical meaning	
10 т	ba most probable posit	D and D and D	of the above	l wall of width	
10. 1	in the first question	ton of a particle in a of	ie unitensional potentia		1
č	$(A) = \frac{1}{2}$	$\frac{1}{2}$	C) a/2	D) 2a/2	J
11 E	A) a/4	B) a/3	C) a/2	D) 2a/3	ı
11. E	instein mass –energy r	elation is		L	Ţ
	A) $v = \frac{mc^2}{mc^2}$	B) $v = \frac{mc}{mc}$	C) $v = \frac{hc}{m}$	D) $\lambda = \frac{mc}{mc}$	
	´ h	ĥ h	λ	, h	
12. T	The uncertainty principl	e is applicable to		[]
	A) Only small partic	eles	B) Microscopic parti	cles	
10 T	C) All material parti	cles	D) Only tiny particle	S	-
13. 1	he wavelength of elect	ron moving with a velo	beity of 500 m/s is (32.2)]
	A) 1.45 μ m	B) 0.50 nm	C) 2.90 nm	D) 3.00 nm	
14. D	Dual nature of matter w	ave proposed by		[]
	A) de Broglie	B) Planck	C) Einstein	D) Newton	
15. V	Which of the following	equation is the normali	zed wave equation	[]
	A) $\iiint \Psi ^2 dx dy d$	z = 0	B) $\iiint \Psi ^2 dx dx$	y dz = 1	
	CCC		666		
	C) $\iiint \Psi dx dy dz$	= 0	D) $\iiint \Psi dx dy$	dz = 1	

			QUESTION BAN	IK 20	019
16. In a one dimensional po	tential box particle ene	rav		ſ	1
$n^2 \pi^2 \hbar^2$	$n^2\pi^2h^2$	n^2h^2	$n^2 \pi^2 \hbar^2$	L]
A) $\frac{n + n}{2ma^2}$	B) $\frac{n^2 n^2 n^2}{2ma^2}$	C) $\frac{\pi n}{8ma^2}$	D) $\frac{n + n}{8ma^2}$		
17. The characteristic of par	rticles are			[]
A) Mass	B) Velocity	C) Energy	D) All	l the al	oove
18. Velocity of matter wave	e is always		,	ſ	1
A) Lesser than velocity	of light B) Equa	l to velocity of light		L	1
C) Greater than velocity	of light D) None	e of these			
19 If an electron is moving	under a potential field	of 15 kV Calculate t	he wavelength		
of electron waves	under a potential field		ne wavelength	ſ	1
A) 1 Å	B) 0 1 Å	C) 10 Å	D = 0.01 Å	L	1
20 According to de Broglie	b) 0.1 A hypothesis electron ex	c) 10 A	D $0.01A$	Г	1
A) Wave	B) Particle	C) Wave and Partic	D Energy	L	1
A) wave 21 The equation $\int \int u ^2 d$	D) I allele		Le D) Lifergy	г	1
21. The equation $\int \int \varphi ^2 d$	x uy uz = 1 represents		c	L]
A) Orthogonal wave fur	iction	B) Normalized way	e function		
C) Orthogonal and Nori	malized wave function	D) none		_	_
22. The uncertainty princip	le was proposed by]
A) de Broglie	B) He	isenberg			
C) Schrödinger	D) Sc	omerfield		r	
23. The electrons which are	e in the valence band ar	e called		L]
A) Valence electrons	B) Protons	C) Neutrons	D) None of th	nese	_
24. Einstein mass energy re	lation is]
A) $E = mc^2$	B) $\frac{h}{\lambda} = mc$	C) $\vartheta = \frac{mc^2}{h}$	D) All		
25. The characteristics of w	vaves are			[]
A) Energy	B) Phase	C) Mass	D) Velocity		
26. When an electron is acc	elerated, if de Broglie v	vavelength is 1 A° th	en the applied vo	ltage i	S
A) 12 volts	B) 150 volts	C) 15 volts	D) 500 volts	[]
27. The Concept of matter of	of matter waves was sug	ggested by		[]
A) de Broglie	B) Planck	C) Einstein	D) none		
28. Quantum theory of radia	ation was proposed by			ſ	1
A) de Broglie	B) Planck	C) Einstein	D) none	L	-
29. Mass - Energy relation	was proposed by	-,	,	ſ	1
A) de Broglie	B) Planck	C) Einstein	D) none	L	1
30 The interpretation of wa	ve function is given by		D) none	ſ	1
A) Max Born	B) Maxwell	C) Finstein	D) Planck	L	1
21 The Schrodinger time in	D) Maxwell	on is applicable to th	o systems having		
S1. The Schlodinger time in	idependent wave equali		e systems naving	, Г	1
A) Managantana	- D)	(\mathbf{C}) and \mathbf{L} with \mathbf{C}	\mathbf{D}) for a set	L]
A) Momentum	B) energy	C) velocity	D) force	r	1
32. An example of Fermion	1 18			L]
A) He atom	B) nucleus	C) α particle	D) electron		
33. If E_1 is the energy of gr	cound state, then the ene	ergy gap between 2 nd	and 4 th the		
energy levels of a partic	le confined in a potenti	al box is		[]
A) 12 E ₁	B) 10 E ₁	C) 8 E ₁	D) 6 E ₁		
34. The region of space aro	und the nucleus where t	he probability of find	ling the electron	is	
maximum is called				[]
A) Orbit	B) Orbital	C) Nodal plane	D) None		

			QUESTION BANK	2019
35	The region of space around the nucleus	here the probability of t	finding the electron is	
	zero is called		[]
	A) Orbit B) Orbital	C) Nodal plane	D) None	
36	The probability of finding a particle in t	e ground state in a poter	tial box of finite	
	width is		[]
	A) Maximum at extreme points	B) maximum at	Middle of the energy le	evel
	C) constant at all places	D) Zero everyw	here	
37	The probability of finding a particle in t	e top most level in a pot	ential box of finite	
	width is		[]
	A) Maximum at extreme points	B) maximum at	Middle of the energy le	evel
	C) constant at all places	D) Zero everyw	here	
38	If the ground state energy of a particle of	onfined in a box is E_1 , W	That is its energy in	
	the 4 th state		[]
	A) $4 E_1$ B) $8 E_1$	C) 12 E ₁	D) 16 E ₁	
39	The non-existence of electron inside the	ucleus can be proved n	athematically by []
	A) Pauli's principle	B) Dirac princip	le	
	C) Heisenberg uncertainty principle	D) Klein-Gordo	n principle	
40	The product of cannot	e determined simultaneo	ously for a fermion	
	according to Heisenberg's uncertainty p	nciple.	[]
	A) Position and acceleration	B) velocity and moment	tum	
	C) position and momentum	D) mass and energy		

<u>Unit –III</u> <u>Electron Theory of Metals and Semiconductors</u>

1.	Classical free electron theory was develope	ed by	[]		
	A) Drude and Lorentz B) Somerfield	C) Goldstein	D) Rutherford			
2.	Quantum free electron theory was developed	ed by	[]		
	A) Drude and Lorentz B) Somerfield	C) Goldstein	D) Rutherford			
3.	According to quantum free electron theory	the electrical conductivity	is given by []		
	A) $\sigma = n^2 e^2 \tau_F / m^*$ B) $\sigma = n e^2 \tau_F / m^*$	C) $\sigma = n^3 e^2 \tau_F / m^*$	D) $\sigma = ne^3 \tau_F / m^*$			
4.	The energy band gap between valence band	and conduction band in	a conductor is []		
	A) 1 eV B) 2 eV	C) 0	D) 5 eV			
5.	The energy band gap between valence band	and conduction band in a	a semiconductor is []		
	A) Less than 1 eV B) $0.2 - 2 \text{ eV}$	C) 0	D) 5 eV			
6.	The energy band gap between valence band	and conduction band in	an insulator is []		
	A) 0 B) 10 eV	C) 6 eV	D) 2 eV			
7.	The classical free electron theory is based of	on the principles of	[]		
	A) Classical mechanics B) Quantum mec	chanics C) Thermod	ynamics D) None			
8	The quantum free electron theory is based of	on the principle of	[]		
	A) Classical mechanics B) Quantum mec	chanics C) Thermod	ynamics D) None			
9.	In classical free electron theory, electrons a	are moving in pote	ential []		
	A) 0 B) Constant	C) Periodic	D) Parabolic			
10.	In quantum free electron theory, electrons a	are moving in	[]		
	A) 0 B) Constant	C) Periodic	D) exponential			
11.	In Band theory of solids, electrons are mov	ing in	[]		
	A) 0 B) Constant	C) Periodic	D) exponential			
12.	The average distance travelled by an electro	on between two successiv	e collisions in the			
	presence of applied field is known as		[]		
	A) Mean free path B) relaxation time	e C) velocity	D) acceleration			
13.	Classical free electron theory failed to expla	ain	[]		
	A) Conductors B) Insulators	C) semiconductors	D) dielectrics			
14.	The average velocity obtained by electron b	by applying electric field	s known as []		
	A) RMS velocity B) average veloc	eity C) uniform velocity	D) drift velocity			
15.	15. The time taken by electron to reach original position from the disturbed position is					
	called as		[]		
	A) Relaxation time B) mean time	C) periodic time	D) None			
16	The time taken by electron to make two su	ccessive collisions is call	ed as []		
	A) Relaxation time B) mean time	C) collision time	D) none			
17.	Choose the best conductor		[]		
	A) Cu B) Ag	C) Al	D) Fe			
18.	Choose the best insulator		[]		
	A) Plastic B) Ag	C) Al	D) Fe			
19.	Energy band gap of diamond (Insulator) is		[]		
	A) 1 eV B) 2 eV	C) 0 eV	D) 5 eV			
20.	20. The cause of electrical resistance in metals is due to [
	A) Lattice vibrations B) Impurities	C) scattering	D) All			

	QUESTION BANK	2019
21. In E-K diagram]	1
A) Each portion of the curve represents allowed and forbidden band	ls	1
B) The curves are horizontal at the top		
C) The curves are parabolic D) All the above		
22. The highest filled energy level occupied by electrons is called as]	1
A) Fermi level B) atomic level C) molecular level 23 At T= 0 K in metal below the Fermi level all energy levels are	D) Dirac level	1
25. At $I = 0$ K in metal below the Fermi level, an energy levels are	D) montially fills	ן ג
A) Empty B) Completely Filled C) Hall-filled 24 At T= 0 K in metal above the Fermi level all energy levels are	D) partially line	u I
24. At $I = 0$ K in metal above the Fernin level, an energy levels are A) Empty B) Completely Filled (C) Helf filled	D) nontially fills	[۲
A) Empty B) Completely Filled C) Hall-filled	D) partially life	u 1
25. The origin of the energy bands was explained by	(a dal D) Daha'a ma]]_1
A) Free electron theory B) Classical theory C) Kronig Penny N	(Iodel D) Bonr's mo	
26. The mass of the electron in the periodic potential field is known as		J
A) Critical mass B) Effective mass C) constant mass	D) relative mass	1
27. A semiconductor have the band structure similar to an insulator at		J
A) 0 K B) 100 K C) 1000 K	D) 10 K	-
28. An example of direct band gap semiconductor is		
A) Si B) Ge C) Al	D) GaAs	
29. An example for indirect band gap semiconductor is	[]
A) Si B) Al C) Cu	D) GaAs	
30. In direct band gap semiconductors energy is released in the form of	[]
A) Photons B) Phonons C) Gravitons	D) Mesons	
31. Energy band gap of Si is	[]
A) 1.12 eV B) 0.72 eV C) 0.55 eV	D) 0.34 eV	
32. Energy band gap of Ge is]]
B) 1.12 eV B) 0.72 eV C) 0.55 eV	D) 0.34 eV	
33. In conductors, the gap between valance and conduction band is	[]
A) 0.5 eV B) 0.1 eV C) 0 eV	D) 1 eV	
34. If the temperature of a semiconductor increases, the resistance will	[]
B) increase B) decrease C) remain constant	D) none	
35. Electrical resistivity of metals depends on	[]
A) Concentration B) temperature C) density	D) refractive ind	ex
36. In indirect band gap semiconductors energy is released in the form	of []
B) Photons B) gravitons C) phonons	D) Mesons	-
37. The energy of photon and phonon are	Ì	1
A) Same B) $E_{photon} > E_{phonon}$ C) $E_{phonon} > E_{photor}$	D) E photon = E_{photon}	non
38. If a magnetic field is applied perpendicular to a current carrying condeveloped which is perpendicular to both current magnetic fields	nductor, a force is	
This affect is known as	г	1
A) Meissner's effect B) Compton effect C) Unit Effect	D) Direct affact	Ţ
20 If the Hall coefficient is positive the meterial is		1
A) a trace D) a trace O) intrinci	D) roro	1
A) p-type B) n-type C) intrinsic	D) none	г
40. Hall effect is used to find the	. []
A) concentration of charge carriers B) mobility of charge carr	iers	
C) type of semiconductor D) all the above		

QUESTION BANK 2019 Unit - IV Lasers & Optical Fibers 1. In He-Ne laser, the ratio of He and Ne in gas mixture is 100:1 10:1 A 1:10 C 1:100 D В 2. He-Ne laser is a good example for a _____ level system. D Nine В Three C Four A Two 3. In excited state, the atoms will remain for a time period of 10⁻¹⁰ sec C 10⁻⁸ sec D A 10⁻⁴ sec В 10⁻⁶ sec 4. The lasing action is possible only if there is A A black body B Population inversion C A set of reflecting D Oscillation of laser mirrors The pumping process used in a He-Ne gas Laser is 5. D passing forward bias A optical pumping B electric discharge C chemical reaction Population inversion cannot be achieved by 6. 7. A optical pumping B chemical reaction C electric discharge D thermal process 8. He-Ne gas laser is A solid state laser B semiconductor laser C continuous laser pulsed laser D 9. The ratio of Einstein coefficients $\frac{A_{21}}{B_{21}}$ С В А $8\pi h \vartheta^3$ $8\pi h\vartheta^3$ $8\pi h\vartheta^3$ D $2\pi h \vartheta^3$ $\overline{c^2}$ c^3 c^3 10. The wavelength of the laser emitted by the He-Ne laser is A 694.3 nm 632.8 nm В С 652.5 nm D 671.6 nm 11. Laser radiation is monochromatic В highly directional C Coherent D All Α 12. Propagation of light through fiber core is due to diffraction В interference C total internal reflection D refraction Α 13. In a He-Ne laser, atoms involved in laser emission are Helium D Chlorine neon В С Hydrogen Α 14. Nd:YAG laser is D Semiconducting laser A Gas laser В Liquid laser С Solid laser 15. Measurement of variation of divergence of laser beam with distance is used to determine B Monochromaticity C Brightness **D** Directionality Α Coherence 16. Coherence of light is measured from B Visibility of interference C Brightness of Wavelength А Variation in spot D size with distance fringes it produces the beam the beam 17. Which of the following can be used for generation of laser pulse? Ruby laser B Carbon dioxide laser C Helium neon laser D Nd- YAG laser 18. In Nd-YAG laser, YAG means C Y3Al5012 D Both A and B А Yttrium Aluminium B Yellow Aluminium Garnet Garnet 19. The active medium in Nd:YAG laser is Y А Nd В YAG crystal С D AG 20. Which scientist first came up with the idea of stimulated emission? Alexander Graham Bell B Isaac Newton C Arthur Schalow D Albert Einstein 21. In case of an optical fibre the acceptance angle is equal to $\sin^{-1}\sqrt{n_1^2 - n_2^2}$ B $\sin^{-1}(n_1^2 - n_2^2)$ C $\sin^{-1}(n_1 - n_2)$ D $\sin^{-1}\sqrt{n_1^2 + n_2^2}$ Α

22.	The refractive index of co	ore and cladding are 1.5	563 a	nd 1.498 respectivel	y, then	NA []
	A 0.346	B 0.246	С	0 192	D	0 446	
23	Attenuation in optical fib	res is mainly due to	C	0.172	D	0.770	[]
20.	A Scattering losses	B Absorption	С	Bending losses	D	All the ab	ove
	i Seattering losses	losses	C	Denang losses	D	i in the us	0,0
24.	The refractive index of co	ore and cladding are 1.5	0 and	1.44 respectively, a	and then	Δ is	[]
	A 0.4	B 0.004	C	0.04	D	4	
25.	In fiber optical fibre co	mmunication systems,	elect	ric signals are con	verted i	nto	í 1
	optical signals by	3 <i>i</i>		C		•	
	A Photo detectors	B LED	С	Solar cells	D	All the ab	ove
26.	Numerical aperture depen	nds on					[]
	A Acceptance angle	B Critical angle	С	Refractive angle	D Re	fraction an	ıgle
27.	In step index fibers, the s	ignal travel in a		-			[]
	A Linear manner	B Random manner	С	Zigzag manner	D Ske	ew manner	
28.	In fiber optical fiber com	munication systems, op	tical	signals are converted	d into		[]
	electrical signals by						
	A Photo detectors	B LED	С	Solar cells	D	All the ab	ove
29.	The refractive index of co	ore and cladding are 1.5	0 and	1.44 respectively a	nd then		[]
	acceptance angle is						
	A 24°50′	B 26°	С	23°	D	23°65′	
30.	In graded index fibers, th	e refractive index of the	e core	varies			[]
	A Linearly	B Exponentially	С	Parabolically	D	None	
31.	Losses in fiber are expres	sed i					[]
	A dB/km	B Constant	С	W/m	D	None	
32.	The refractive index of co	ore and cladding are 1.5	0 and	1.44 respectively, a	and then	NA is	[]
	A 0.42	B 0.042	С	4.2	D	0.0042	_
33.	In graded index fibre, sig	nals travels in a	a		.		L.
24	A Random manner	B Skew manner	C	Zigzag manner	DL	inear mann	ier
34.	Optical fiber carries the s	ignals in the form of	C	V	D]
25	A Current	B Light	C	\dot{X} – rays	D	None	1
35.	In step - index fiber the re	P Constant		Ig 1S	D	Nono	J
26	A Zero The refrective index of th	B Constant	C	Integular	D	r	1
30.	A Greater than the	P Loss then the	C	Equal to the aladdi	na D	L All the ob	
	A Oreater than the	D Less than the	C	Equal to the claudin	ing D	All the ab	ove
37	The material used in fiber	rie				Г	1
57.	A Copper	B Alluminium	С	Glass	Л	l Ru bher]
38	Numerical aperture $(N\Delta)$		C	01055	D	Ru UUCI	1
50.	$\Delta \sin \theta$	$B \cos \theta$	С	tan A	D	cot A	1
30	To amplify the optical si	anals in their passage t	hrow	on the fibers the fo	llowing	are [1
59.	used	Endis in their passage t	mou	511 the 110c15, the 10	nowing		1
	A Amplifiers	B Repeaters	С	Either A or B	D	None	
40	Relative refractive index	change $\Lambda =$	C		D	[1
10.	A $n_1 + n_2$	$B n_1 - n_2$	С	$n_1 - n_2$	D	n_1 +	n_2
	<u> </u>	- <u></u>	C	<u> </u>	2	<u> </u>	
	<i>n</i> 1	·*1		n_2		112	

<u>Unit-V</u> <u>Physics of Nanomaterials</u>

1.	The average spacing between	n neighboring atom	is in a typical crystal is	about	[]]
	a) 50 Pico meters b)	300 Pico meters	c) 2 nanometers d)	5 nanometers		
2.	Who was the first to propose	e the concept behind	l nanotechnology		[]
	a) Galileo Galilei (1600) b)	Richard P. Feynma	an (1959) c)K. E	ric Drexler (197	77)	
	d) Richard Smalley (1985)					
3.	By reducing the size of a nar	nomaterial, the char	nge in the interatomic s	pacing is	[]
	a) Increased b)	Decreased c) Firs	t increased and then de	creased d) Kep	t constar	nt
4.	1 nm =				[]
	a) 10 ⁻⁹ mm b)	10 ⁻⁹ cm	c) 10 ⁻⁹ m	d) 10 ⁻⁹ m ²		
5.	Nanomaterials are catalysts	because of their enl	nanced		[]
	a) Chemical activity b)	thermal activity	c) Mechanical activity	y d) optical activ	vity	
6.	In quantum confinement eff	fect, the energy leve	els of changes.		[]]
	a) Electrons b)	Atoms	c) Molecules	d) Nanoparticl	es	
7.	Who first visualised the cond	cept of nanotechnol	ogy?		[]
	a) Eric Drexler b)	Richard Feynman	c) Norio Taniguchi	d) Newton		
8.	Quantum dot is an example	of			[]
	a) 1D nanomaterial b)	2D nanomaterial	c)3D nanomaterial	d) all		
9.	For a cubic nanoparticle of s	ide 'a' surface area	to volume ratio is give	en by	[]
	a) 3/a b)	4/a	c) 5/a	d) 6/a		
10	. When the dimension of the r	nanoparticles is of the	he order of de Broglie	wavelength, or	mean fre	ee
	path of electrons, energy lev	els of electrons cha	nge. This effect is calle	ed	[]]
	a) Surface area to volume ra	tio b) Quantum co	onfinement c) CN'	Γd) None		
11	. For nanomaterials, the surface	ce area to volume ra	atio is		[]
	a) Large b) Very	^v large	c) Small	d) Very small		
12	. The size range of nanomater	ials is			[]]
	a) 1 to 100 cm b)	1 to 100 nm	c) 1 to 100 mm	d) 1 to 100 µm	ı	
13	. Clothes made up of nanofibr	es are			[]]
	a) Water repellent b)	Wrinkle free	c) Stress resistant	d) All of these		
14	. In the fabrication of nanopar	ticles, bulk materia	l is crushed into nanop	articles on		
	method.				[]]
	a) CVD b)	Ball milling	c) Plasma arching	d) Sol-gel met	hod	
15	. For a sphere of nanoparticles	s of radius r, surface	e area to volume ratio i	s given by	[]]
	a) 2/r b)	3/r	c) 4/r	d) 5/r		
16	. The technique used for the fa	abrication of nanon	naterials is		[]]
	a) Ball milling b)	Sol-gel	c) CVD	d) All of these		
17	. Gold nanospheres of 100 nm	n appear			[]]
	a) Blue in color \mathbf{b}	n 11 1		1) 0	alar	
		Red in color	c) Violet in color	d) Orange in c	0101	
18	. Fullerene is	Red in color	c) Violet in color	d) Orange in c]
18	a) Blue in color b) . Fullerene is a) Carbon molecule with car	Red in color bon atoms arranged	c) Violet in color l in a spherical shape	d) Orange in c	[]
18	a) Blue in colorb) Fullerene isa) Carbon molecule with carb) Thin film of polymer	Red in color	c) Violet in color l in a spherical shape	d) Orange in c	[]]
18	 a) Blue in color b) Fullerene is a) Carbon molecule with car b) Thin film of polymer c)Another form of diamond 	Red in color	c) Violet in colorl in a spherical shape	d) Orange in c	[]

	QUESTION BANK	2019
19. SEM stands for a) Scanning Electron Microscope	b) Scanning Echelon Meter]
c) Scanning Electron Meter	d) Scanning Electrical Meter	
20. Diameter of one carbon atom is	[]
a) 0.5 nm b) 0.05 nm	c) 0.15 nmd) 5 nm	1
A) Atomic scale b) Molecular scale	c) Structure level d) Conic scale]
22. Nanomaterials are]
a) Small volume materials b) The atoms or m	nolecules	-
c) Having grain size of 1 nm d) Having domain	n sizeabout 100 nm	
23. Properties of nanoparticles differ from bulk mat	terials due to presence of []
a) Less number of atoms b) More number of at c) Impurities d) More number of at	toms	
24. An electrochromic device is		1
a) Used in solar cells		L
b) Display device which displays information b	y changing colour when a voltage is app	lied
c) A crystalline mixture		
d) None of the above 25 The prefix "nano" comes from a Greek word m	eoning	1
A) Billion B) Dwarf	c) Invisible D) Infinite	1
26. Which of the following wave lengths for electro	omagnetic radiation (light) is within	
the visible region	[]
a)1 nm b) 100 nm	c) 500 nm d) 1 <i>µm</i>	
27. A quantum dot is]
a) An object that changes it properties upon add b) A mathematical operator used in string theory	dition or removal of a single electron	
c) A hole in space time	y, and represented by the character	
d) An electromagnetic vacuum fluctuation		
28. In the fabrication of nanoparticles, microcrystal	lline structures are broken down to	
nano crystalline structures in	[]
a) Chemical vapour deposition b) Ball m	illing c) Plasma arching d) Sol-gel	method
29. The advantages of sol-gel technique in the fabri	Ication of nanomaterial is	J
c) It is polished to optical quality d) All of the	above	
30. The size of red blood cell is	[]
a) 700 nm b) 30 nm c) 100 n	nm d) 1 nm	
31. The size of virus is	[]
a) 700 nm b) 30 nm c) 100 nm	nm d) 1 nm	1
a) Bottom up b) Top down c) Bot	que [$h = a k h = d$] None of above	J
33. Due to quantum confinement in nanoparticles,	electronic bands become	1
a) Wider b) Disappear c) Narro	wer d) None of above	
34. Preparation of nanomaterial by slicing or succes	ssive cutting of a bulk material to get	
nano sized particles is		
a) Bottom up b) Top down c) Bot	h a&b d) None of above	

QUESTION BANK	2019				
35. Quantum well lasers and high quality optical mirrors are fabricated using – technique []				
A) Bottom up b) Top down c) Botti act u) None	1				
50. What is graphene?]				
a) Anew material made from carbon nanotubes					
b) A one atom thick sheet of carbon					
c) Thin film made from fullerenes					
d) A software tool to measure and graphically represent nanoparticles					
37. What is "self assembled mono layers"? []				
(a) Atoms are molecules that spontaneously form uniform single lawyers					
(b) A type of clothing that gets thicker in response to colder temperatures					
(c) An optical device that puts itself together					
(d) A fuzzy logic circuit					
38 SEM is used mainly to study the properties of materials	1				
(a) Surface (b) bulk (c) magnetic (d) chemical	1				
30 In SEM the langes used are of type	1				
59. In SEM, the tenses used are of type []				
a) Glass lenses b) electromagnetic lenses c) mirrors d) thin film glass	;				
40. FET stands for]				
a) Field effect thermostat b) Field effect transistor					
c) Field effect triode d) Function effect table					